Are Symmetry Explanations Grounding Explanations?

Michael Townsen Hicks

University of Birmingham

March 6, 2020

Roadmap

- Introduction
- Physical Symmetries
- Grouding Symmetries
- Symmetries Grouding
- Conclusion

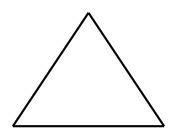
The Plan

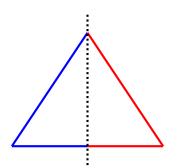
I aim to show that there are two sorts of symmetry explanations that are plausibly regarded as grounding explanations.

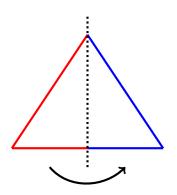
The Plan

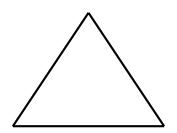
- I aim to show that there are two sorts of symmetry explanations that are plausibly regarded as grounding explanations.
- The first is the explanation of symmetry principles in terms of spacetime or property structure.
 - I will argue that symmetry principles, which are constraints on the laws, are plausibly grounded in spacetime structure.

The Plan


- I aim to show that there are two sorts of symmetry explanations that are plausibly regarded as grounding explanations.
- The first is the explanation of symmetry principles in terms of spacetime or property structure.
 - I will argue that symmetry principles, which are constraints on the laws, are plausibly grounded in spacetime structure.
- The second is the explanation of conservation laws via symmetry principles.
 - I will argue that symmetry principles ground


The Plan


- I aim to show that there are two sorts of symmetry explanations that are plausibly regarded as grounding explanations.
- The first is the explanation of symmetry principles in terms of spacetime or property structure.
 - I will argue that symmetry principles, which are constraints on the laws, are plausibly grounded in spacetime structure.
- The second is the explanation of conservation laws via symmetry principles.
 - I will argue that symmetry principles ground


Roadmap

- Introduction
- Physical Symmetries
- Grouding Symmetries
- Symmetries Grouding
- Conclusion

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$x \rightarrow x + \epsilon$$

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$X \rightarrow X + \epsilon$$
 $F'_{G:1,2} = \frac{Gm_1m_2}{((x_1+\epsilon)-(x_2+\epsilon))^2}$

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$\begin{aligned} & X \to X + \epsilon \\ & F'_{G:1,2} = \frac{Gm_1m_2}{((x_1+\epsilon)-(x_2+\epsilon))^2} \\ & = \frac{Gm_1m_2}{((x_1-x_2)+(\epsilon-\epsilon))^2} \end{aligned}$$

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$X \to X + \epsilon F'_{G:1,2} = \frac{Gm_1m_2}{((x_1+\epsilon)-(x_2+\epsilon))^2} = \frac{Gm_1m_2}{((x_1-x_2)+(\epsilon-\epsilon))^2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

$$X \to X + \epsilon F'_{G:1,2} = \frac{Gm_1m_2}{((x_1+\epsilon)-(x_2+\epsilon))^2} = \frac{Gm_1m_2}{((x_1-x_2)+(\epsilon-\epsilon))^2} = \frac{Gm_1m_2}{(x_1-x_2)^2} = F_{G:1,2}$$

$$F_{G:1,2} = \frac{Gm_1m_2}{(x_1-x_2)^2}$$

Symmetry Principles and Metalaws

A symmetry principle states that the laws are invariant under some symmetry transformation.

Symmetry Principles and Metalaws

- A symmetry principle states that the laws are invariant under some symmetry transformation.
- Lange (2016) claims that symmetry principles are metalaws: laws governing the laws.

Symmetry Principles and Metalaws

- A symmetry principle states that the laws are invariant under some symmetry transformation.
- Lange (2016) claims that symmetry principles are metalaws: laws governing the laws.
- A metalaw is a law that is a member of a nomically stable set
 - a set of propositions Γ is *nomically stable* if and only if, for any p logically compatible with Γ and any $q \in \Gamma$, $\neg(p \diamond \rightarrow \neg q)$

Roadmap

- Introduction
- Physical Symmetries
- Grouding Symmetries
- Symmetries Grouding
- Conclusion

Spacetime Symmetries and Symmetry Principles

My argument here has two steps:

Spacetime Symmetries and Symmetry Principles

- My argument here has two steps:
 - first, I'll argue that spacetime structure explains symmetry principles. (2 arguments).
 - Then, I'll argue that this explanation is plausibly regarded as a grounding explanation. (Largely suggestive).

Spacetime Symmetries and Symmetry Principles

- My argument here has two steps:
 - first, I'll argue that spacetime structure explains symmetry principles. (2 arguments).
 - Then, I'll argue that this explanation is plausibly regarded as a grounding explanation. (Largely suggestive).
- Recall that a symmetry principle is a constraint on the laws, which states that all laws are invariant under a particular symmetry transformation.

Spacetime Symmetries and Symmetry Principles

- My argument here has two steps:
 - first, I'll argue that spacetime structure explains symmetry principles. (2 arguments).
 - Then, I'll argue that this explanation is plausibly regarded as a grounding explanation. (Largely suggestive).
- Recall that a symmetry principle is a constraint on the laws, which states that all laws are invariant under a particular symmetry transformation.
- I take spacetime structure to consist in subnomic facts: specifically in the metric of distance between

1. Argument from Counterfactual Dependence

Spacetime symmetry principles counterfactually depend on underlying spacetime structure.

If Spacetime were not Minkowski, the laws wouldn't be invariant under the Lorentz transformations. Cheap proof:

Argument from Counterfactual Dependence

Spacetime symmetry principles counterfactually depend on underlying spacetime structure.

- If Spacetime were not Minkowski, the laws wouldn't be invariant under the Lorentz transformations. Cheap proof:
 - P1 Spacetime is not Minkowski (except locally) and the laws are not Lorentz invariant (except locally).
 - P2 Strong Centering: if P and Q are true in the actual world, P□→ Q

Argument from Counterfactual Dependence

Question: Does this mean that the Lorentz transformations are not nomically stable? After all, Spacetime not being Minkowski is logically compatible with the Lorentz transformations not holding.

■ Recall that to be nomically stable, a set of propositions Γ must be such that for any p logically compatible with Γ and any $q \in \Gamma$, $\neg(p \diamond \rightarrow \neg q)$

Argument from Counterfactual Dependence

Question: Does this mean that the Lorentz transformations are not nomically stable? After all, Spacetime not being Minkowski is logically compatible with the Lorentz transformations not holding.

- Recall that to be nomically stable, a set of propositions Γ must be such that for any p logically compatible with Γ and any $q \in \Gamma$, $\neg(p \diamond \rightarrow \neg q)$
- 「Spacetime is not Minkowski」 is compatible with 「The laws are Lorentz invariant.」

Argument from Counterfactual Dependence

Question: Does this mean that the Lorentz transformations are not nomically stable? After all, Spacetime not being Minkowski is logically compatible with the Lorentz transformations not holding.

- Recall that to be nomically stable, a set of propositions Γ must be such that for any p logically compatible with Γ and any $q \in \Gamma$, $\neg(p \diamond \rightarrow \neg q)$
- Spacetime is not Minkowski is compatible with The laws are Lorentz invariant.
- But it might be that spacetime is not Minkowski and

2. The Symmetry to Unreality Inference

 Most philosophers accept some form of a symmetry to unreality inference.

2. The Symmetry to Unreality Inference

- Most philosophers accept some form of a symmetry to unreality inference.
 - If some quantity varies between symmetry-related states, then we infer that there is nothing real corresponding to the quantity.

2. The Symmetry to Unreality Inference

- Most philosophers accept some form of a symmetry to unreality inference.
 - If some quantity varies between symmetry-related states, then we infer that there is nothing real corresponding to the quantity.
- Claim: this an inference to the best explanation.

2. The Symmetry to Unreality Inference

- Most philosophers accept some form of a symmetry to unreality inference.
 - If some quantity varies between symmetry-related states, then we infer that there is nothing real corresponding to the quantity.
- Claim: this an inference to the best explanation.
- If it is, then the underlying structure must explain the symmetry principle.

Grounding explanation

I suggest that this explanation is a grounding explanation.

 Plausibly, forces are relations between objects, and these relations are mediated by spatiotemporal relations.

Grounding explanation

I suggest that this explanation is a grounding explanation.

- Plausibly, forces are relations between objects, and these relations are mediated by spatiotemporal relations.
- More plausibly, forces are grounded in fields, where fields are properties of spacetime points and their structure dependent on spatiotemporal structure.

Grounding explanation

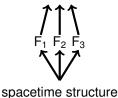
I suggest that this explanation is a grounding explanation.

- Plausibly, forces are relations between objects, and these relations are mediated by spatiotemporal relations.
- More plausibly, forces are grounded in fields, where fields are properties of spacetime points and their structure dependent on spatiotemporal structure.
- This suggests that interactions are invariant under symmetry transformations because those describe the spatiotemporal structure that grounds those interactions.

The Grounding Picture

On this picture, spacetime structure grounds the force laws (or fields). These then ground the symmetry principle.

symmetry principle


F₁ F₂ F₃

spacetime structure

The Grounding Picture

- On this picture, spacetime structure grounds the force laws (or fields). These then ground the symmetry principle.
- The principle is not an accident, but neither does it govern the forces or field interactions.

symmetry principle

Roadmap

- Introduction
- Physical Symmetries
- Grouding Symmetries
- Symmetries Grouding
- Conclusion

Symmetries and Conservation Laws

The symmetries of classical mechanics in its Lagrangian formulation are those transformations which leave the Lagrangian unchanged (velocity boosts, spatial shifts, temporal shifts, and rotations).

Symmetries and Conservation Laws

- The symmetries of classical mechanics in its Lagrangian formulation are those transformations which leave the Lagrangian unchanged (velocity boosts, spatial shifts, temporal shifts, and rotations).
- Noether's theorem shows that for any continuous variational symmetry of a Lagrangian, there is a conserved quantity.

Symmetries and Conservation Laws

- The symmetries of classical mechanics in its Lagrangian formulation are those transformations which leave the Lagrangian unchanged (velocity boosts, spatial shifts, temporal shifts, and rotations).
- Noether's theorem shows that for any continuous variational symmetry of a Lagrangian, there is a conserved quantity.
- Worth noting: there is a inverse Noether's theorem, which shows that for every conserved quantity there is a variational symmetry.

Explanatory Options

Are the Noether theorems *explanatory*? There are three dominant answers to this question:

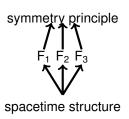
Yes: The symmetries explain conservation laws by governing them. The symmetries are metalaws.

Explanatory Options

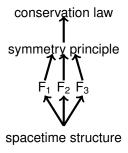
Are the Noether theorems *explanatory*? There are three dominant answers to this question:

- Yes: The symmetries explain conservation laws by governing them. The symmetries are metalaws.
- Yes: The symmetries explain conservation laws by grounding them.

Explanatory Options


Are the Noether theorems *explanatory*? There are three dominant answers to this question:

- Yes: The symmetries explain conservation laws by governing them. The symmetries are metalaws.
- Yes: The symmetries explain conservation laws by grounding them.
- No: Both symmetries and metalaws are grounded by the dynamics. The Lagrangian explains it all.


The Grounding Picture Again

This picture suggests that conservation laws are explained by the symmetries, not because they are governed by them, but rather because they are grounded by them

The Grounding Picture Again

- This picture suggests that conservation laws are explained by the symmetries, not because they are governed by them, but rather because they are grounded by them
- Or rather: the symmetries describe the featues of the underlying spacetime structure that grounds the fact that these quantities are conserved.

Roadmap

- Introduction
- Physical Symmetries
- Grouding Symmetries
- Symmetries Grouding
- Conclusion

Conclusions

- I've presented two arguments that symmetry principles are explained by non-nomic facts about spacetime structure.
- I've suggested that this explanation is best understood as a grounding explanation.
- I've suggested that this grounding explanation can be extended to the explanation of conservation laws by symmetry principles.