Wednesday 2 February: Inaugural Lecture – Professor Alastair Wilson, “Ways and Whys”

Our life is full of contingency. In every decision we face a range of alternative possibilities – ways for things to be – between which we have to choose as best we can. What sort of things are these elusive ways for things to be? How can we know anything about them? And why do we care about them? A novel answer comes from an unlikely source: quantum theory, understood in terms of parallel quantum worlds. But this approach leaves another kind of question open: why are things the way they are? I disentangle some possible answers to this new question suggested by the quantum account of contingency. Some why-questions can be wholly answered by quantum theory; other why-questions emerge as unanswerable, for principled reasons; but a third type of why-question seems to run deeper than any explanation quantum theory can provide.

Professor Wilson’s research relates to metaphysics and the philosophy of science, with particular interests in the metaphysics of modality and dependence, Everettian quantum mechanics, explanation, chance and laws of nature. You can find Professor Wilson’s biography here and detail on Professor Wilson’s current five-year research project FraMEPhys (A Framework for Metaphysical Explanation in Physics), funded by the European Research Council here

The lecture was held on 2/2/22 at 5.30pm at the University of Birmingham in the Arts Building – Main Lecture Theatre and was followed by a reception and informal launch for the following two books:

Causal Perspectivalism and Physics Workshop – 22 Sep 2021

On Wednesday 22 September 2021, the FraMEPhys project at the University of Birmingham is hosting a free one-day workshop entitled ‘Causal Perspectivalism and Physics’ via Zoom. Registration details will appear here shortly.

If you have any queries about this event, please email f.longworth@bham.ac.uk

SPEAKERS

Alison Fernandes (Trinity College Dublin)
“How Agency Features in Explaining the Direction of Causation”

Jenann Ismael (Columbia University)
“It’s not what you look at, it’s what you see”

Peter Evans (University of Queensland) – (Joint work with Gerard J. Milburn and Sally Shrapnel)
“Causal asymmetry from the perspective of a causal agent”

SCHEDULE (Times BST)

Wednesday 22 September

1400-1510: TBC

15-minute break

1525-1635: TBC

15-minute break

1650-1800: TBC


ABSTRACTS

Jenann Ismael (Columbia University)
“It’s not what you look at, it’s what you see”
Many writers have pointed out that the apparent direction of causation depends on a coarse-graining that carves phase space into macrostates in a radically uneven way. I will look at the complex set of ways in which agency depends on and exploits the thermodynamic gradient and assess what that means for the senses in which agency (and the causal ideas that agents deploy in navigating the world) are a matter of perspective

Peter Evans (University of Queensland). (Joint work with Gerard J. Milburn and Sally Shrapnel)
“Causal asymmetry from the perspective of a causal agent”
Agency accounts of causation are often criticised as being unacceptably subjective or anthropocentric. According to such criticisms, if there were no human agents then there would be no causal relations, or, at the very least, if humans had been different then so too would causal relations. Here we describe a model of a causal agent that is not human with a view to exploring this latter claim. This model obeys the known laws of physics, and we claim that it endows the causal agent with a “causal viewpoint: a distinctive mix of knowledge, ignorance and practical ability that a creature must apparently exemplify, if it is to be capable of employing causal concepts” (Price, 2007, p.255). We argue that this model of a causal agent provides a clear illustration of the epistemic constraints that define such a ‘causal perspective’, and we employ the model to demonstrate how shared constraints lead to a shared perspective. Furthermore, we use this model to scrutinise the alignment of three familiar asymmetries with the causal asymmetry: the thermodynamic arrow, the arrow of time, and the arrow of deliberation and action.

Humeanism and the Pragmatic Turn – Workshop 12-13 May 2021

On 12-13 May 2021, the FraMEPhys project at the University of Birmingham and the University of Florida co-hosted a free two-day workshop entitled ‘Humeanism and the Pragmatic Turn’ via Zoom.

The workshop poster/flyer is available here.

If you have any queries about this event, please email f.longworth@bham.ac.uk

SCHEDULE (Times BST)

Wednesday 12 May

1400-1510: John Roberts (University of North Carolina, Chapel Hill)
“Responsibility and the Natural Modalities”



1525-1635: Christian Loew (Umeå University, Sweden), Siegfried Jaag (Heinrich Heine University Düsseldorf), and Michael Hicks (University of Birmingham)
“Laws and Normativity”

1650-1800: Jenann Ismael (Columbia University)
“Some Questions about the Role of Totality in the Best Systems Analysis”

Thursday 13 May

1400-1510: Vera Matarese (University of Bern)
“Super-Humean Fictionalism”

1525-1635: Toby Friend (University of Bristol)
“In Defense of Pure Pith”

1650-1800: Barry Loewer (Rutgers University, New Brunswick)
“Let’s Make a (Package) Deal”

ABSTRACTS

John Roberts (University of North Carolina, Chapel Hill)
“Responsibility and the Natural Modalities”

A pragmatist approach to laws, causation, counterfactuals and so on begins by following Wittgenstein’s advice to look for the use, not the meaning.  So, how do we use the concepts of law, causation, counterfactuals and so on?  In lots of ways.  But one particular family of uses stands out, namely the ways in which we use statements about causal relations, law-statements, and counterfactual conditionals to block or permit attributions of responsibility for outcomes to agents.  I show how to reductively analyze these natural modalities in terms of concepts pertaining to responsibility, and how to use a pragmatist theory of responsibility to generate pragmatist theories of the natural modalities.

Christian Loew (Umeå University, Sweden), Siegfried Jaag (Heinrich Heine University Düsseldorf), and Michael Hicks (University of Birmingham)
“Laws and Normativity”  

It is widely agreed that any theory of laws needs to be able to explain inferences from nomic facts to certain non-nomic facts, such as why ‘that it is a law that p’ entails ‘that p’. This challenge is often called the ‘inference problem.’ In this paper, we show that there is an additional ‘normativity problem’: theories of laws need to explain why nomic facts entail certain normative facts, such as what agents ought to do and believe. We will argue that solving the inference problem is not enough to solve the normativity problem and that neither non-Humean theories of laws nor the orthodox Humean best systems account can solve the latter. By contrast, we argue that recent pragmatist versions of Humean reductionism about laws have a ready solution to the normativity problem.

Vera Matarese (University of Bern)
“Super-Humean Fictionalism”

Can Super-Humeanism be legitimately regarded as a fully-fledged scientific realist view? Supporters of Super-Humeanism respond in the affirmative. Indeed, even though they take the properties figuring in the laws to be mere dynamical parameters that should not be interpreted literally, they have recently proposed a functionalist account to locate them in the primitive ontology and to vindicate their existence. I argue, on the contrary, that this functionalist strategy is dubious and that it is not enough to recover scientific realism. Instead, drawing on Varzi’s work on Humean Fictionalism, I propose that Super-Humeanism should be regarded as a fictionalist view. According to this view, the dynamical parameters appearing in the laws should be interpreted as face-value, but sentences about them should not be regarded as strictly expressing the truth. Since this fictionalist view only targets the dynamical structure of our theories, and is not properly ontological, it is still compatible with metaphysical realism and the primitive ontology approach. Moreover, given that it regards the dynamical structure of our theories as the best possible ‘fiction’ to make sense of reality, it also grounds and justifies our belief that reality should be structured with the laws that these theories propose. I will conclude that this view is not a scientific realist view. However, I will also suggest that the gap between such a fictionalist view and scientific realism is not as severe as one would think.

Toby Friend (University of Bristol)
“In Defense of Pure Pith”  

Lewis’s Best Systems Account (BSA) of laws was not much motivated by pragmatics. But recent commentary on his general approach to laws has taken a ‘pragmatic turn’. This was initiated by Hall’s defence against the ‘ratbag idealist’ which argued that best system accounts should be admired rather than criticised for the inherent pragmatism behind their choice of desiderata for what counts as ‘best’. Emboldened by Hall’s pragmatic turn, recent commentators have proposed the addition of pragmatically motivated desiderata to complement the canonical desideratum of pure pith. This, they hope, will allow their revisionary BSAs to respond better to various counterexamples against the original account. Here I problematise these revisionary approaches (though not the pragmatic turn itself). While actual laws may satisfy the newly proposed desiderata, they cannot be constitutive of laws. By comparison, the canonical desideratum appears to be relevant to explaining why and when the revisionary desiderata will reflect pragmatic features of the laws and better reflect the motives behind practitioners of fundamental physics. I therefore attempt to respond to the counterexamples on behalf of the Lewis’s ‘canonical’, purely pithy, BSA.

Barry Loewer (Rutgers University, New Brunswick)
“Let’s Make a (Package) Deal”

I will describe an account of laws of nature that is a descendent and improvement on Lewis Humean Best Systems Account (BSA) called “The Package Deal Account” (PDA) Lewis describes the BSA as a package deal since it proposes a package that includes both laws and chances. But it is a package in which the perfectly natural properties and space-time are not part of the package but are metaphysically prior to laws and chances. In contrast, the PDA is a package that includes fundamental properties, space-time, and laws and chances in one big package. Neither fundamental laws nor fundamental properties are metaphysically prior to the other. Because of this the PDA overcomes a number of objections to Lewis’ BSA and is an account that is closer to the practice of physics.

Counterfactual Reasoning in Science – March 2021

This image has an empty alt attribute; its file name is high-quality-bullet-apple-cropped.jpg
Image: Harold Edgerton, Bullet Through Apple, 1964 (printed in 1984) Dye transfer print on paper, /240 40.8 x 50.8 cm 16.063 x 20 inches. © 2010 MIT. Courtesy of MIT.

On Thursday 25 March 2021, the FraMEPhys project at the University of Birmingham hosted a free half-day workshop on the topic of counterfactual reasoning in science, via Zoom.

If you have any queries about this event, please email f.longworth@bham.ac.uk

SCHEDULE (times GMT/UTC)

2.30-3.20pm: Ruth Byrne (Trinity College Dublin)
“How people reason with counterfactual and counterpossible conditionals”

10-min break

3.30-4.20pm: Marco J. Nathan (University of Denver)
“Counterfactuals as Placeholders: Take II”

4.40-5.30pm: Peter Tan (Fordham University)
“Two Theses about Modality and Modelling”

ABSTRACTS

Ruth Byrne (Trinity College Dublin)
“How people reason with counterfactual and counterpossible conditionals”
When people understand and reason from counterfactual conditionals, such as “if the car had run out of petrol it would have stalled”,  they envisage two possibilities, the imagined conjecture (the car ran out of petrol and it stalled) and the presumed facts (the car did not run out of petrol and it did not stall).  Although alternative theories of reasoning have been tested for counterfactuals,  little is known about how people reason with counterpossibles, subjunctive conditionals with impossible antecedents, such as “if lakes were made of bleach people would not swim in them”. I discuss the results of several recent experiments designed to examine how people reason with a range of counterpossibles, that compare those that seem non-vacuously true, to those that seem vacuously true, and those that seem false. The experiments examine the judgments participants made about whether such counterpossibles are true or false and their tendency to make inferences such as modus ponens and modus tollens. I discuss the implications of the results for theories of how people understand and reason from counterfactual and counterpossible conditionals.

Marco J. Nathan (University of Denver)
“Counterfactuals as Placeholders: Take II”
In previous work, I advanced the thesis that counterfactuals, just like their corresponding dispositional properties, are placeholders standing in for predictions or explanations, without themselves actually predicting or explaining anything. This, I maintained, explains the role of subjunctive conditionals and dispositional properties in scientific practice. A few years later, I still believe that both of these constructs are placeholders. However, the placeholder thesis is in need of clarification and amendment. I was wrong to suggest that counterfactuals never explain, and this point can be clearly seen by drawing a distinction between two kinds of placeholders, ‘frames’ and ‘difference-makers.’ The goal of this talk is to elaborate and extend the placeholder view of counterfactuals and its role in scientific explanation, by focusing on examples from various branches of natural and social sciences. 

Peter Tan (Fordham University)
“Two Theses about Modality and Modelling”
Philosophers of science interested in the content of highly idealized scientific representations often claim that their content is modal in nature. There are two prevailing theses about the modal content of idealized models: the view that they provide information about what is merely possible (the “how-possibly thesis”), and the view that their content either literally is or is best understood counterfactually (the “counterfactual interpretation”). These theses about modality and modeling have not received a treatment that compares their advantages, and in fact, only recently has the how-possibly thesis begun to receive more scrutiny. I defend the counterfactual interpretation on three broad grounds. First, it coheres best with broader views about scientific representation; second, it provides a more unificatory account of model formulation and testing; lastly, it best allows for an empiricist-friendly view of the metaphysics of modality.

Density Matrix Realism Workshop – 24 Nov 2020

On Tuesday 24 November 2020, FraMEPhys hosted a free one-day workshop on the topic of Density Matrix Realism. This took place via Zoom, from 2.30-6.30pm GMT.

If you have any queries, please email f.longworth@bham.ac.uk .

Provisional Schedule (times GMT)

2.30-3.00: Katie Robertson (University of Birmingham)
‘An introduction to density matrix realism: what’s at stake?’

3.00-3.45: Owen Maroney (Oxford)

10-min break

3.55-4.40: Roderich Tumulka (Tuebingen)

20-min break

5.00-5.45: Eddy Keming Chen (UC San Diego)

10-min break

5.55-6.25 General discussion and wrap-up

Abstracts

Coming soon.

Idealized Models Workshop, 6 Oct 2020

On Friday 06 Oct 2020, FraMEPhys hosted a one-day workshop at the Univeristy of Birmingham.

If you have any queries, please email f.longworth@bham.ac.uk

Schedule (times BST)

2.00-2.50pm: Arnon Levy (Hebrew University of Jerusalem)
“Must the best explanation be true?”

3.00-3.50pm: Alkistis Elliott-Graves (Helsinki University/University of Bielefeld)
“What are general models about?”

4.00-4.50pm: James Nguyen (University of London)
“Why (at least some) idealisations aren’t false”

5.00-5.50pm: Angela Potochnik (University of Cincinatti)
“Why it matters that idealizations are false”

Abstracts

James Nguyen (University of London)
“Why (at least some) idealisations aren’t false”

In order to understand how idealised models contribute to the epistemic success of science we need to understand how they, and models in general, represent. I outline the, relatively commonly held, view that modelling is an indirect enterprise: model descriptions serve to specify model systems, which in turn represent their target systems. I argue that, suitably interpreted, the idealised aspects of these model systems needn’t be understood as misrepresentations. I then discuss the upshot of this way of thinking in terms of the factivity of explanation and understanding.

Angela Potochnik (University of Cincinatti)
“Why it matters that idealizations are false”

Many of our best scientific explanations incorporate idealizations, that is, false assumptions. Philosophers of science disagree about whether and to what extent we must, as a result, give up on truth as a prerequisite for explanation and thus understanding. I propose reframing this. Factivism or veritism about explanation is not, I think, an obvious and preferable view to be given up only under duress. Rather, it is philosophically fruitful to emphasize how departures from the truth facilitate explanation (and understanding). I begin by motivating one version of the idea that idealizations positively contribute to understanding, then I make the case that it is philosophically important to emphasize this contribution of idealizations. I conclude with a positive account of what theorists about science stand to gain by acknowledging, even emphasizing, how certain departures from the truth benefit our scientific explanations.

22 June 2020: Paul Näger (Münster), “How Quantum Mechanics Solves the Causal Problem of Entanglement”

For the fourth FraMEPhys meeting of 2020, Dr. Paul Näger (University of Münster) gave a talk entitled “How Quantum Mechanics Solves the Causal Problem of Entanglement” via Zoom to the University of Birmingham FraMEPhys group and guests.

ABSTRACT
Recent works show that the statistics of typical experiments with entangled quantum objects (EPR/B experiments) contradict the usual principles of causal explanation, even if one disregards all spatio-temporal constraints (Wood & Spekkens 2015, Näger 2016). More precisely, this causal problem of entanglement consists in the fact that it is impossible that both central principles of the theory of causal Bayes nets (Glymour, Spirtes & Scheines 1993; Pearl 2000)—the causal Markov condition and the faithfulness condition—hold in such experiments. Any correct theory of the quantum realm must violate at least one of these conditions. This threatens the idea that the correlations in such experiments might be explained causally. In this talk I shall present a detailed analysis of the quantum mechanical formalism (in a GRW interpretation), revealing that quantum theory even violates both principles. Nevertheless, I shall argue for the claim that there are good reasons to regard the quantum mechanical explanation as a causal one. For the one, it is a well-known fact that the entangled quantum state does not screen off the correlations in such experiments. In other words, if quantum mechanics is complete, there is no screener-off for the correlations (van Fraassen 1982, Butterfield 1989, Cartwright 1989), implying that the theory violates the causal Markov condition (Spirtes, Glymour, Scheines 1993, Pearl 2000), which is a generalisation of Reichenbach’s principle of the common cause (Reichenbach 1956). Referring to the work of Cartwright (1988), however, I argue that in indeterministic worlds one should accept common causes that do not screen off. Further developing on Cartwright’s ideas, I present a generalisation of the Markov condition which is able to capture these new cases. This saves the central principle of causal explanation in the quantum realm, and makes explicit that underlying the quantum mechanical formalism is a causal structure that can explain the correlations. In a second step I show that the quantum mechanical formalism also violates the causal faithfulness condition. While being one of the central principles of the theory of causal Bayes nets, violating faithfulness does not seem to threaten a causal explanation per se: there are well-known counterexamples to the principle in perfectly causal situations. However, an unfaithfulness seems only acceptable in a causal explanation, when one indicates how it comes about (i.e. which type of unfaithfulness there is) given the causal connections in question; for not all types fit with all structures. Wood & Spekkens (2012) are tacit about which kind of unfaithfulness quantum mechanics involves; Näger (2015) claims that the theory involves an unfaithfulness of a supposedly new kind (unfaithfulness by internal cancelling paths), but only sketches its central features. In the present analysis I show explicitly how quantum mechanics explains the specific no-signalling independences by internal cancelling paths. I also provide an explanation for the unfaithfulness occurring between outcomes and local settings (for maximally entangled states), which reveals another so far unnoticed kind of unfaithfulness. In sum, my analysis shows that quantum mechanics solves the causal problem of entanglement in an astonishing and elegant way: though violating both central principles of causal explanation, the theory can still be considered as providing a causal explanation, if one moderately and reasonably modifies the original principles.

Dr Katie Robertson awarded Leverhulme Early Career Fellowship

Some really excellent news for the FraMEPhys project team – our research fellow Katie Robertson has been awarded a three-year Early Career Fellowship by the Leverhulme Trust, to be hosted at the University of Birmingham and to start in 2021.

Katie’s project is called ‘Increasing entropy: from black holes to the direction of time’ and it links directly into her research with FraMEPhys. We’re all looking forward to continuing to work with Katie and excited to see the outcomes of her new project!

Workshop on Symmetries & Explanation, March 2020

On Fri 6 March, the FraMEPhys project hosted a workshop on Symmetries and Explanation at the University of Birmingham (Department of Philosophy, ERI G51).

This image has an empty alt attribute; its file name is image.png

0930-1000: Registration. Coffee & Snacks

1000-1115: “Are Particles Characterised by a Symmetry Group? If So, Which One?” Adam Caulton (University of Oxford)

1115-1230: “On Metaphysically Necessary Laws from Physics” Niels Linnemann (University of Bremen)

1230-1400: Lunch (ChangeKitchen) ERI Atrium

1400-1515: “Are Symmetry Explanations Grounding Explanations?” Mike Hicks (University of Birmingham)

1515-1530: Coffee

1530-1700: “What Was the ‘Great Advance’ of 20th-Century Physics that ‘Put Symmetry First’?” Marc Lange (University of North Carolina, Chapel Hill)

1700-1800: Drinks at Staff House, University of Birmingham

For abstracts see the workshop page. For any questions or information about the event, please email f.longworth@bham.ac.uk

Adam Caulton: “Are Particles Characterised by a Symmetry Group? If So, Which One?”
Niels Linnemann: “On Metaphysically Necessary Laws from Physics”

18 February 2020: Luke Fenton-Glynn (UCL), “Probabilistic Actual Causation”

On Tuesday 18 February as part of the FraMEPhys Seminar series, Luke Fenton-Glynn (UCL) gave a talk entitled “Probabilistic Actual Causation” (Talk Slides, Full Paper) at the University of Birmingham. Luke presented an extension of recent theories of deterministic actual causation, formulated in terms of causal graphs, to irreucibly indeterministic cases.

ABSTRACT: Actual (token) causation – the sort of causal relation asserted to hold by claims like the Chicxulub impact caused the Cretaceous-Paleogene extinction event, Mr. Fairchild’s exposure to asbestos caused him to suffer mesothelioma, and the H7N9 virus outbreak was caused by poultry farmers becoming simultaneously infected by bird and human ’flu strains – is of significance to scientists, historians, and tort and criminal lawyers. Progress has been made in explicating the actual causal relation in the deterministic case by means of the use of structural equations models and causal graphs. I seek to make similar progress concerning the probabilistic case by using probabilistic causal models and associated causal graphs

Earlier on the same day, Luke took part in a reading group discussion of the above paper.

4 February 2020: Andreas Hüttemann, “Laws and their Modal Surface Structure”

For the second FraMEPhys meeting of 2020, Prof. Dr. Andreas Hüttemann (University of Cologne) gave a talk on “Laws and their Modal Surface Structure” at the University of Birmingham (Muirhead Tower, 427).

ABSTRACT: Law statements or generalisations are involved in one way or another in explanation, confirmation, manipulation or prediction. I argue that these practices require a particular reading of the generalisations involved, namely as making claims about the behaviour of systems. These practices therefore presuppose the existence of systems or things (pace Ladyman, Ross etc.). 
Furthermore, I look at the metaphysical surface structure associated with laws. I use the term “surface structure” to indicate that this structure may or may not be reduced to non-modal facts – as the Humean has it. I will side-line the debate about whether Humeanism is a tenable philosophical position. The positive claim I advance is that the modal surface structure can be explicated in terms of invariance relations – where I take invariance to be a modal notion.

Earlier on the same day, from 1130-1230 in ERI 159, Prof. Dr. Hüttemann attended a reading group where we discussed his “Reduction and Monism“.

21 January 2020: David Papineau, “The Seductions of Interventionism”

At the first FraMEPhys meeting of 2020 (21 January), Professor David Papineau (King’s College London) gave a talk on “The Seductions of Interventionism” at the University of Birmingham.

ABSTRACT: The philosophy of causation is changing. The new ‘interventionism’ promises to dissolve many longstanding problems. Based on the work of Judea Pearl, and transmitted to philosophy by Jim Woodward, this approach builds a bridge between the philosophical analysis of causation and techniques used in statistical causal modelling. It is certainly welcome that philosophers of causation are finally trying to make sense of these statistical techniques. But in the process of transmission a number of ungrounded ideas have been installed as philosophical orthodoxy. In this talk I shall expose two: first, the idea that we need to appeal to ‘interventions’ or actions to understand causation; second, the idea that correlational facts alone are insufficient to determine causal structure.

Talk Handout (4 pages)

Earlier on the same day, Professor Papineau took part in reading group on his paper ‘Causation as a Guide to Life‘, which discussed some of the themes from his talk.